
Assessing the Resilience of Socio-Ecosystems: Coupling Viability Theory and
Active Learning with kd-Trees. Application to Bilingual Societies∗

Isabelle Alvarez(1,3)
(1) LIP6, UPMC

F-75005 Paris, France
isabelle.alvarez@lip6.fr

Ricardo de Aldama (2)

(2) ISC-PIF
F-75005 Paris, France

ricardo.de.aldama@iscpif.fr

Sophie Martin (3)

(3) Irstea, LISC
F-63172 Aubiere Cedex, France

sophie.martin@irstea.fr

Romain Reuillon (2)

(2) ISC-PIF
F-75005 Paris, France

romain.reuillon@iscpif.fr

Abstract
This paper proposes a new algorithm to compute
the resilience of a social system or an ecosystem
when it is defined in the framework of the mathe-
matical viability theory. It is applied to the problem
of language coexistence: Although bilingual soci-
eties do exist, many languages have disappeared
and some seem endangered presently. Mathe-
matical models of language competition generally
conclude that one language will disappear, except
when the relative prestige of the languages can be
modified. The viability theory provides concepts
and tools that are suitable to study the resilience,
but with severe computational limits since it uses
extensive search on regular grids. The method we
propose considers the computation of the viability
output sets as an active learning problem with the
objective of restraining the number of calls to the
model and information storage. We adapt a kd-tree
algorithm to approximate the level sets of the re-
silience value. We prove that this algorithm con-
verges to the output sets defined by the viability
theory (viability kernel and capture basin). The re-
silience value we compute can then be used to pro-
pose a policy of action in risky situations such as
migration flows.

1 Introduction
Assessing the resilience of an ecological or social system is
becoming a challenge in the context of sustainable develop-
ment (as stated in [Perrings, 2006]). Traditionally resilience
measures the ability of a system to recover after a perturba-
tion (see [Martin, 2004] for an analysis of operational defini-
tions of resilience). In this context the mathematical theory
of viability is an interesting framework since it studies the
compatibility of dynamical systems and constraints [Aubin

∗The research leading to these results has received funding
from the E.C.’s FP7/2009-2013 under grant agreement DREAM n.
222654-2.

et al., 2011]. This framework is used in sustainability stud-
ies in order to find control policies that keep the system in a
given constraint set, such as the concept of tolerable windows
[Bruckner et al., 2003] for climate change studies. When the
system evolves outside the desirable constraint set, viability
theory can assess whether and how the system can be driven
back to desirable states. In particular it can provide the return-
ing time [Doyen and Saint-Pierre, 1997]. In this paper we
quantify the resilience as the inverse value of this returning
time, as it is done in [Martin, 2004] for ecological systems.

Viability analysis is based on the computation of the via-
bility kernel and its capture basin. The viability kernel gath-
ers all the states from which there exists a control function
that allows the evolution to stay in the constraint set. Its cap-
ture basin gathers the states from which it is possible to reach
the viability kernel in finite time. Unfortunately, the com-
plexity of the computation task is exponential with space or
time when using a discrete approximation on a grid [Saint-
Pierre, 1994]. Therefore this method is limited to very low
dimension (at most 3) or to linear models, so its applicabil-
ity is very much impaired. Moreover, the complexity of the
model in real application can limit the practical use of the
method because of computation problems when running the
model. Dimension 4 was exceptionally reached in a real food
processing application with the help of grid computing (see
[Sicard et al., 2012], [Reuillon et al., 2010]).

In the particular case of finite time horizon, [Bonneuil,
2006] proposes a method based on simulated annealing to
generate trajectories near the boundary. This method works
in higher dimensions but it only produces a set of trajecto-
ries so it cannot be used to compute the viability kernel nor
resilience level sets. Following the same idea of focusing on
the boundary in the general case, [Deffuant et al., 2007] in-
troduces classification functions in Saint-Pierre’s viability al-
gorithm in order to reduce the number of calls to the model
and to represent the viability set in a more compact way than
the traditional regular grid. But the Support Vector Machine
(SVM) functions used as classification function in [Deffuant
et al., 2007], although very attractive, don’t fulfill the condi-
tions of the convergence theorem. So the output sets produced

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2776

with the SVM method are not reliable. To overcome these
limitations, we also consider the computation of the bound-
ary at each step as an active learning problem, but we use kd-
trees as it is done in [Rouquier et al.,] to limit the number of
calls to the model. Using kd-trees as classification functions
as well as oracle functions to store the successive approxima-
tions of the viability sets, it is possible to converge towards
the true viability kernel or capture basin.

The paper is organized as follows: Section 2 presents the
language competition problem and its translation in the via-
bility framework. We define the resilience and show how it is
related to the capture basin defined by the theory. Section 3
is devoted to the computation of the capture basin. It explains
how it can be seen as an active learning problem, and it de-
scribes the kd-tree algorithm that is used in that purpose. It
also gives the proof of convergence of the algorithm towards
the output sets of the viability theory. Section 4 presents the
result of the computation for the language competition prob-
lem and how the computed resilience value can be used to
propose action policies that guarantee the language coexis-
tence.

2 Resilience of bilingual societies
Bilingual societies exist, but history tells us that many lan-
guages have disappeared. Presently, many languages seem
endangered. Some researchers have proposed mathemati-
cal models to study language competition (see for instance
[Abrams and Strogatz, 2003]). These models are consis-
tent with historical data from past or present endangered lan-
guages (such as Welsh, Scottish, Gaelic, Quechua). Models
without bilingual population generally conclude that one lan-
guage eventually becomes extinct. When a bilingual popula-
tion exists, the survival of the language diversity depends on
the relative prestige of languages [Bernard and Martin, 2012].

But the question of resilience of these societies is still
pending. Real societies are subjected to migration: both im-
migration and emigration (due to economic, environmental,
educational or safety reasons for instance) disturb the dynam-
ics of the different language speakers and can jeopardize the
diversity of a bilingual society. This is the reason why it is in-
teresting to study the ability of a bilingual society to recover
from such a perturbation. Here we propose to study this re-
silience in the viability framework.

2.1 Model of bilingual society
The model from [Bernard and Martin, 2012] describes a bilin-
gual society considering three groups in the population: the
monolingual speakers of languageA, the monolingual speak-
ers of languageB, and the bilingual speakersAB. The model
is described by σA the proportion of speakers of A, σB the
proportion of speakers of B, and the proportion of bilinguals
σAB with σAB = 1 − σA − σB . The rate at which speakers
of one language switch to become speakers of the second lan-
guage depends on the attractiveness of this second language,
but transitions between groups concern A or B → AB and
conversely. Since it is unlikely for one speaker to switch lan-
guage from scratch, we have PA→B = PB→A = 0. We then
have:

dσA

dt = σABPAB→A − σAPA→AB , (with analogous equa-
tions for dσB

dt and dσAB

dt).
Concerning transitions, monolinguals are sensitive to the

size of the monolingual group of the other language when
bilinguals are sensitive to the whole group of speakers of the
other language. The proportionality factor is the prestige of
one language compared to the other (we note s the prestige
of language A, so 1− s is the prestige of language B). A pa-
rameter a models how the attractiveness of a language scales
with the proportion of speakers. So we have:
PAB→A = (1 − σB)as and PA→AB = σaB(1 − s). The

value of the prestige, s, can evolve with public action: ed-
ucation, advertising, incentive policy, arranged employment,
positive discrimination, and so on. Since these kinds of pol-
icy take time to give results, dsdt is considered here as a control
on the dynamics, bounded in some interval U = [−ū; ū] with
ū > 0. In this framework the model of a bilingual society is
defined by the following equations:

dσA

dt = (1− σA − σB)(1− σB)as− σAσaB(1− s)
dσB

dt = (1− σA − σB)(1− σA)a(1− s)− σBσaAs
ds
dt = u ∈ U

(1)
If s is constant in]0; 1[, the dynamics has three equilibria:
(0, 1), (1, 0) which are stable, and an unstable one. Conse-
quently, one language is doomed to become extinct. There-
fore it is necessary to apply control policy on s to insure the
coexistence.

2.2 Set of desirable states and viability domain
In order to ensure the sustainability of the language diversity,
it is necessary to define what is considered as desirable. For
instance, an easy way to define language diversity would be to
consider that the proportion of monolingual speakers of each
language has to be above a threshold σ. The set of desirable
set in E = [0, 1]3 is then K = {(σA, σB , s)} such that:{

0 < σ ≤ σA ≤ 1
0 < σ ≤ σB ≤ 1

0 ≤ s ≤ 1.
(2)

We suppose now that this threshold is set to 0.2. We con-
sider that the boundary of the control variation ū is set to 0.1.
Parameter a set to 1.31 according to the literature. (It is cali-
brated in [Abrams and Strogatz, 2003] from historical data).

In this framework the viability theory applies. It can be
shown that there exists a subset of K which is a viability do-
main D: from each state x = (σA, σB , s) in D there exists
a control function u(t) that allows the evolution of the dy-
namics 1 to stay inside D. Figure 1 shows the shape of D.

2.3 Capture basin and resilience value
Outside the viability domainD, the bilingual society may not
be viable any longer. In particular, the proportion of one of
the languages may fall under the threshold σ = 0.2, which is
not considered as a satisfying future. 1

1Since there exists a viability domain in K, the viability theory
states that there must be a viability kernel includingD, but actually it

2777

Figure 1: Viability domain D for the problem of language
coexistence. The bounding box is the set of desirable states.
Evolution starting in D can stay within forever.

We consider that without additional information, the vi-
ability domain D gathers the secure states, since from any
starting point in D, we are sure that the evolution can remain
in the set of desirable states K (that is, each language is spo-
ken by at least 20% of the population) with the appropriate
action policy.

In case of perturbation, the state of the bilingual society can
jump from D to a state outside the viability domain. Here we
consider that perturbations can affect each variable: Migra-
tions change the value of the proportion of speakers of each
language. But the prestige of one language may also be dis-
turbed, for example by criminal cases or impressive achieve-
ment concerning one group. In a sustainability viewpoint, the
issue is to know if it is possible to reach a secure position in
the viability domain, starting from the disturbed state. The set
of states from which there exists a control policy that drives
the system back to D is called the capture basin of D in the
viability theory.

Capt(D) = {x | ∃u(.), ∃T | x(T) ∈ D}

At each time horizon T , it is possible to consider the corre-
sponding capture basin Capt(D,T) = {x | ∃u(.), x(T) ∈
D}. Its boundary ∂Capt(D,T) is the level set of the re-
turning time T to D. In particular we have by definition:
Capt(D, 0) = D.

Definition 1 (Resilience of a state) The resilience of a state
x outside the viability set D is r(x) = 0 if x /∈ Capt(D).
Otherwise, it is r(x) = 1

T with T = min{t| x ∈ Capt(D, t)}.

Definition 2 The resilience of a bilingual society to a given
perturbation set P is: min{r(x+ y)| x ∈ D, y ∈ P}.
When the capture basin is not greater than the viability do-
main, then the resilience of the bilingual society is zero: In

could beD itself. In this latter case, outsideD, one of the languages
is doomed to be spoken by less than a proportion σ = 0.2 of the
population.

case of a perturbation, the proportion of speakers of one lan-
guage will never recover. If the capture basin is greater than
the viability domain D, that means that if the state of the so-
ciety is not as expected yet but still in the capture basin, it can
return to the set of desirable states with an appropriate con-
trol policy. Computing the capture basin of D will allow to
measure resilience and to find these control policies.

3 Computation of the resilience
3.1 Computation of the capture basin: active

learning sampling with kd-tree
The computation of the capture basin of the viability domain
D can be seen as a particular problem of viability [Aubin,
2001]. Actually, the capture basin can be defined as a pro-
jection of the viability kernel of an auxiliary viability prob-
lem with one additional dimension, the time dimension. So
the same computational limits apply. The classical approach
consists in sampling the state space along a grid, and store the
coordinates of all viable points, but this is costly in terms of
time and memory.

We consider the dynamical model as a black box F defined
from E = [0, 1]3 to E = [0, 1]3. F is the discrete dynamical
system corresponding to the model 1. Based on this black
box function F , an exact function f(S)(x) fromE = [0, 1]3 to
{0, 1} is built, which can tell as an oracle whether there exists
or not a control u ∈ U such that the trajectory starting at point
xwith control u belongs to a given set S at the following time
step. If this set S is Capt(D,T) then x ∈ Capt(D,T + dt)
when f(x) = 1, and x /∈ Capt(D,T + dt) when f(x) = 0.

As in [Rouquier et al.,], we use kd-trees to discover the
boundary of Capt(D,T + dt). The kd-tree subdivides the
search space E. It focuses on the boundary by construction,
so it reduces the number of calls to the oracle f , compared to
the extensive search on the grid.

We first build a kd-tree gdt to approximate f(D). So
gdt is an approximation of the characteristic function of
Capt(D, dt). We then recursively build a kd-tree gT+dt that
approximates fg(T)

. By construction g(T+dt) is an approxi-
mation of the characteristic function of Capt(D,T + dt).

3.2 Algorithm
The kd-tree g = gT is built by refining its root node which
contains the whole space E. To this root node is associated a
point x0 ofD such that an evolution starting at x0 is still inD
at time step T . Since D is a viability domain, any point in D
is suitable. The root node is labeled to 1, since its associated
point x0 is in Capt(D,T).

Nodes that are refined are always divided in two halves
along their largest dimension, unless they meet the stopping
criterion: a node is not divided any more if the length of its
largest side is already h. These are called terminal nodes.
With this splitting method, nodes are represented by a vector
of half-open intervals (except for border nodes). Since inter-
vals are split in the middle, they can’t overlap, they are either
disjoint, adjacent or included in one another. Nodes that have
to be refined are:
• Border nodes (nodes that are adjacent to the boundary of

the search space E) with label 1.

2778

• Adjacent nodes with different labels (they are called crit-
ical pairs).

Two nodes are adjacent if and only if on each coordinate axis,
one interval is included in (or equal to) the other, except for
one coordinate where both intervals are adjacent (their clo-
sures have exactly one common point). When a node is re-
fined, a point p is drawn at random (other method can be used)
in each child node which is labeled with f(p). .

The sketch of the algorithm is the following:

Algorithm 1 BuildG(root, h)
0. while count 6= 0 do {
1. count← 0
2. A← NodeToDivide(root)
3. foreach nodei ∈ A do {
4. if nodei is not a terminal node then do {
5. count← count+ 1
6. Refine(nodei, h)
7. A← A\nodei (a node is refined only once) }}
8. return g = root

Refine(node, h) creates two children at node node, by
splitting it along its largest dimension if its greater than h.
If node is represented by the vector of intervals ([ai, bi[)1,..,n
and is divided along j, its children will be have the same vec-
tor values except for the jth coordinate which is [aj ,

(bj−aj)
2 [

for one child and [
(bj−aj)

2 , bj [(if bj 6= 1) for the other
([(1−aj)2 , 1] with bj = 1). A call to the oracle is made for
the child that need it in order to attribute a label to the node.
(Other methods may require 2 calls).

Algorithm 2 NodeToDivide(node)
0. if node is a leaf then
1. if f(node) = 1 AND node is a border

then return {node}
2. else return(∅)
3. else { (node1, node2)← node.children
4. result← ∅
5. result← result ∪ NodeToDivide(node1)
6. result← result ∪ NodeToDivide(node2)
7. result← result ∪ PairsInNodes(node1, node2)
8. return result }
Algorithm 3 PairsInNodes(node1, node2)
node1 and node2 are necessarily adjacent
0. result← ∅
1. if both node1 and node2 are leaves then
2. if f(node1) 6= f(node2) then
3. result← {node1, node2}
4. else if neither node1 nor node2 are leaves then
5. foreach nodei child of node1 do {
6. foreach nodej child of node2 do {
7. if nodei and nodej are adjacent then
8. result← result ∪ PairsInNodes(nodei, nodej) }}
9. else do {
10. leaf ← the leaf (either node1 or node2)
11. node← the other node
12. border← axis and point of adjacency
13. label← 1− f(leaf)

14. foreach nodei ∈ BoundaryNodes(node, border,
label) do {
15. if leaf and nodei are adjacent then

result← result ∪ {leaf , nodei} }
16. return result

BoundaryNodes(node, border, label) returns all the
leaves l within node such that f(l) = label and that share
with node the same boundary border.

The characteristic function is built by calling
NodeToDivide on the search space E.

3.3 Convergence
The algorithm refines a subtree (generally the root) by split-
ting leaves in two, so it reaches the stopping criterion in finite
time.

We show here that the series of sets defined by the kd-tree
algorithm converges towards the viability kernel of the asso-
ciated viability problem. The method we use verifies the con-
ditions of the convergence theorem 1 proposed in [Deffuant
et al., 2007]. This theorem applies when a discrete viability
kernel is approximated with a classification procedure.

A general viability problem is defined by a controlled dy-
namics in E ⊂ Rp modeled by a set of equations such as (1),
and a compact set of constraintsK ⊂ E, such as (2) in which
we want the dynamics to evolve:{

x′(t) = ϕ(x(t), u(t))
u(t) ∈ U(x(t)) ⊂ Rq
x(t) ∈ K ⊂ E

(3)

The viability kernel is the subset of states from which
there exists a control function u(t) that allows the evolu-
tion of the dynamics to stay inside K: Viab(K) = {x ∈
K | ∃u(.) | x(t) ∈ K ∀t ∈ [0,+∞[}. Considering a time
interval dt, the discrete dynamical system F associated to 3
is a correspondence E 7→ E which associates to a state x its
set of successors. We assume that F is µ-Lipschitz, which
means that the images of two vectors x and y can’t diverge
from more than µd(x, y):

F (x) = {x+ ϕ(x, u)dt, u ∈ U(x)} . (4)

As for the language competition model, we consider that an
oracle f is available, to tell whether at the following time step
a state evolves towards a given set S. In order to guarantee the
convergence toward the viability kernel it is necessary to con-
sider an augmented set; The oracle is assumed to be defined
from E to {0, 1} in the following way: f̂(S)(x) = 1 if and
only if there exists u ∈ U(x) such that d(F (x), S) ≤ µβ(h),
otherwise f̂(x) = 0 (where β(h) depends on the grid and
tends to 0 as h tends to 0). This means that the oracle f̂ is
based on the characteristic function of S ∪ (∪x∈SB(x, µ)).
We have f̂(S) = fS∪(∪x∈SB(x,µ)).

We want to prove that algorithm 1 converges to the charac-
teristic function of the viability kernel viabF (K) of the dis-
crete dynamic (4) when its stopping criterion h tends to 0 and
when the viability kernel has sufficiently smooth properties.

Theorem [Deffuant et al., 2007] assures that the series of
sets built with a learning procedure verifying conditions (5)

2779

and (6) converges towards the viability set. In order to apply
this theorem, we consider a discrete grid Kh induced by the
stopping criterion h. For example, the points of the grid can
be centered on each terminal leaf of a totally refined tree. We
obviously have: ∀x ∈ K,∃xh ∈ Kh, such that d(x, xh) ≤
β(h), with β(h)→ 0 when h→ 0. (Actually β(h) = h

2

√
p).

In the following we omit the stopping criterion index h when
it is not necessary. At each time step we define a discrete set
Kn+1 ⊂ Kn ⊂ Kh, and we build a kd-tree g on the sets
Kn+1, Kh\Kn+1 with algorithm 1. Kn+1 gathers the points
of Kn such that the dynamics (4) send them near g(Kn) (at a
distance less than µβ(h)). We note gn the kd-tree built with
the subsets of Kn and Kh\Kn that correspond to points xh
for which the oracle f̂ has been called when refining the tree.
We note Gn = {x ∈ K | gn(x) = 1}. We have K0 = Kh

and G0 = K. Then:

Kn+1 =
{
xh ∈ Kn | f̂Gn(xh) = 1

}
.

Since Kn+1 ⊂ Kn ⊂ Kh it converges to a limit Lh. We
note gh the kd-tree built on the subsets Lh and Kh\Lh, and
Gh = {x ∈ K | gh(x) = 1}.
Theorem 1 (fact) If the learning procedure g verifies the fol-
lowing conditions (5) and (6), then Gh converges to Viab(K)
when h→ 0.

∃λ ≥ 1, ∀n > 0, (gn(x) = 1)⇒ d(x,Kn) ≤ λβ(h) (5)
∀n > 0, (gn(x) = 0)⇒ d(x,Kh\Kn

h) ≤ β(h) (6)

We consider that the viability kernel viabF (K) (and its com-
plementary set inK) verify the following conditions: We note
Vε(S) = {x ∈ S | B(x, ε) ⊂ S} (V is an open space in S)

∃ε > 0 | Vε(viabF (K)) and Vε(K\viabF (K))
are path-connected. (7){

∀x ∈ viabF (K), d(x, Vε(viabF (K))) ≤ εd
∀x ∈ viabF (K), d(x, Vε(viabF (K))) ≤ εd (8)

The path-connectivity of the viability kernel and its comple-
mentary are insured when K is simply connected and suffi-
ciently regular. Conditions 8 insure that when the stopping
criterion h is small enough, then there are no more thin tenta-
cle that can’t be seen through the grid.

Theorem 2 The series of characteristic functions defined by
the kd-trees build with algorithm 1 converges to the char-
acteristic function of the viability kernel when the stopping
criterion tends to 0.

Proof: The learning procedure g based on algorithm 1 ver-
ifies the conditions of Theorem 1.

We first prove condition (6). Let x be a state inK such that
gn+1(x) = 0. This means that x belongs to a leaf L whith
labeling point xh ∈ K\Kn+1. If L is a terminal node, then it
is divided to the stopping criterion, and we have: d(x, xh) ≤
β(h). If the leaf L of x is not a terminal node, let us consider
the terminal node N to which x would belong if the node L
was divided into a subtree to the stopping criterion. Let yh
be the labeling point of N : we have d(x, yh) ≤ β(h). We

Figure 2: Level set of the resilience at 0.5; 0.2; 0.1; 0.08;
0.05; 0.025, corresponding to time level 2, 5 ,10, 15, 20, 40.
Stopping criterion h = 2−18. Lighter colors correspond to
less resilient states.

also have N ⊂ L. Since L is not a terminal node, the closest
labeling point y of a terminal node with label 1 is at least
separated from L by another terminal node with label 0. So
necessarily yh 6= y and so yh ∈ Kn+1 and condition (6) is
fulfilled. Since the kd-tree algorithm 1 proceeds in the same
way whatever the label of the nodes, the condition (5) is also
fulfilled. •

The oracle f̂ is defined with the following procedure: Let
g be a kd-tree build with algorithm 1. g is the characteristic
function of G. We build a kd-tree ĝ by changing the label
of critical leaves to 0, then refining the tree again with algo-
rithm 1. This adds a level of new critical leaves with label
0 (refined from larger nodes with label 0), that are adjacent
to the leaves whose label have been modified. If we note
G = {x ∈ K, g(x) = 1} and H = {x ∈ K, ĝ(x) = 0},
we have: h

√
p ≥ d(G,H) ≥ h. This operation is repeated k

times until kh ≥ µβ(h). So the use of ĝ(k) is a bounded ap-
proximation of the oracle f̂ . This guarantees the convergence
of the process to the viability kernel.

4 Preservation of language diversity
4.1 Full resilience of bilingual societies
We used algorithm 1 in order to compute an approximation of
the capture basin of the viability domain D of the language
competition problem. 2

From the viability domain D, the algorithm computes the
successive approximations of the capture basin. Figure 2
shows the capture basin of D at different time horizons. The
boundaries are the level sets of the resilience.

2For this experiment we use directly f as the oracle function and
not f̂ , and the points associated to the leaves are drawn at random.
It reduces the computation time (but the convergence is no longer
strictly decreasing).

2780

Figure 3 shows the evolution of the volume of the different
approximation of the capture basin in language competition
problem when increasing the time horizon. Since we nec-
essarily have σA + σB ≤ 1, the volume of the state space
is 0.5. We can see that the volume of the capture basin ac-
tually converges to 0.5. This means that bilingual societies
are fully resilient: the capture basin of the viability domain
covers the entire space. So whatever the perturbations, there

Figure 3: Evolution of the volume of the capture basin with
time horizon. Convergence to 0.5 occurs around time step
25. (In this experiment the splitting direction in refined node
is selected randomly, so the convergence is not monotonous)

always exists a control policy that allows to return in the set
of desirable states in less than 25 time steps, so the global
resilience is r = 0.04.

With this information it is possible to accept temporary
undesirable situations from the language diversity viewpoint,
such as receiving refugees, which can shift the present state
in D to a state outside D. For instance if the initial state is
(σA = 0.28, σB = 0.48, s = 0.40) it can be decided to ac-
cept a disturbance to the state (σA = 0.22, σB = 0.54, s =
0.40) since its returning time step is only 4.

4.2 Choosing a policy after a disturbance
If a disturbance is inescapable (for instance aging of popula-
tion, etc.), the computation of the capture basin provides con-
trol functions in order to return to the set of desirable states
D. For example, we consider a bilingual society which state
is supposed to be (σA = 0.35, σB = 0.35, s = 0.2). This
means that the proportion of bilingual speakers is 30%. This
state is inside D, which means that an appropriate control of
s can maintain the bilinguism property. We suppose now that
a perturbation occurs, like a large immigration of speakers
of language A. It changes the proportion of speakers of lan-
guage B from 0.35 to 0.41 and the proportion of speakers of
language A to 0.30. The new state P = (0.30, 0.41, 0.2) is
not in D. P is very close to D but even with the maximal
control available ds

dt = 0.1, the dynamics drives the system
outside the constraint set K (at time step 3), as it can be seen
on figure 4. Since the system is resilient, we already know
that it is possible to return to the set of desirable states K.
The resilience of P is r(P) = 0.14, which means that it can
return in 7 time steps to point Q = (0.2, 0.61, 0.90).

Figure 4: Resilient trajectory from the disturbed state P to-
wards the reentry point Q. The model provides the continu-
ous trajectory, while the kd-tree provides the control values.

5 Conclusion
We have presented in this article a new method to compute
the level sets of the resilience defined in the framework of the
viability theory. This method uses kd-trees with a stopping
criterion h to store the characteristic function of the capture
basin of the viability kernel (which provides the level set of
the resilience). It uses a slightly modified kd-tree to approxi-
mate the oracle function that allow to compute these sets. The
number of calls to the oracle function is limited to the num-
ber of nodes of the kd-trees. The building function concen-
trates these calls at points near the boundary of the viability
set. We have proved that this algorithm converges towards
the viability kernel when the stopping criterion h tends to 0.
Moreover, the algorithm that codes the dynamics is a black
box for the algorithm that build the viability kernel (or the
capture basin). This modular aspect guarantees the reusabil-
ity of our approach to other dynamics (the code is available as
free software). We have shown how this method can be used
in a language competition problem. We have shown how a
resilience value can be defined. We have computed the level
sets of the resilience and we have shown how it can be used
to propose action policy in order to guarantee the language
coexistence. This method focuses on the boundary of the vi-
ability sets rather than on the sets themselves, so it allows
to consider state space with one additional dimension But it
still suffers the curse of dimensionality. Further work is in
progress in order to parallelize the refining part of the algo-
rithm. Another limit is that in order to provide efficient and
realistic action policies it is necessary to know the distance
of a state to the boundary of the viability kernel. The algo-
rithm can easily provide an approximation of this distance, so
further work also concentrates on this point.

References
[Abrams and Strogatz, 2003] D.M. Abrams and S.H. Stro-

gatz. Modelling the dynamics of language death. Nature,
424(6951):900, 2003.

2781

[Aubin et al., 2011] J.-P. Aubin, A. Bayen, and P. Saint-
Pierre. Viability Theory: New Directions. Springer, 2011.

[Aubin, 2001] J.-P. Aubin. Viability kernels and capture
basins of sets under differential inclusions. SIAM Journal
Control Optim., 40(3):853–881, 2001.

[Bernard and Martin, 2012] C. Bernard and S. Martin.
Building strategies to ensure language coexistence in
presence of bilingualism. Applied Math. and Comp.,
218(17):8825 – 8841, 2012.

[Bonneuil, 2006] Noel Bonneuil. Computing the viability
kernel in large state dimension. Journal of Mathematical
Analysis and Applications, 323(2):1444 – 1454, 2006.

[Bruckner et al., 2003] T. Bruckner, G. Petschel-Held,
M. Leimbach, and F. L. Toth. Methodological aspects
of the tolerable windows approach. Climatic Change,
56:73–89, 2003.

[Deffuant et al., 2007] G. Deffuant, L. Chapel, and S. Mar-
tin. Approximating viability kernels with support vector
machines. IEEE T. Automat. Contr., 52(5):933–937, 2007.

[Doyen and Saint-Pierre, 1997] L. Doyen and P. Saint-
Pierre. Scale of viability and minimum time of crisis. Set-
Valued Anal., 5:227–246, 1997.

[Martin, 2004] S. Martin. The cost of restoration as a way of
defining resilience: a viability approach applied to a model
of lake eutrophication. Ecol. Soc., 2(9):8, 2004.

[Perrings, 2006] C. Perrings. Resilience and sustainable de-
velopment. Environ. Devel. Econ., 11:417–427, 2006.

[Reuillon et al., 2010] Romain Reuillon, Florent Chuffart,
Mathieu Leclaire, Thierry Faure, Nicolas Dumoulin, and
David Hill. Declarative task delegation in OpenMOLE. In
HPCS, pages 55–62, 2010.

[Rouquier et al.,] J.-B. Rouquier, I. Alvarez, R. Reuillon,
and P.-H. Wuillemin. A kd-tree algorithm to discover the
boundary of a black box hypervolume. Technical Report
hal-00816704, LIP6.

[Saint-Pierre, 1994] P. Saint-Pierre. Approximation of the
viability kernel. Applied Mathematics & Optimisation,
29:187–209, 1994.

[Sicard et al., 2012] M. Sicard, N. Perrot, R. Reuillon,
S. Mesmoudi, I. Alvarez, and S. Martin. A viability ap-
proach to control food processes: Application to a camem-
bert cheese ripening process. Food Control, 23(2):312 –
319, 2012.

2782

